【儀器網 使用手冊】激光掃描共聚焦熒光顯微鏡是一種利用計算機、激光和圖像處理技術獲得生物樣品三維數據、*的分子細胞生物學的分析儀器。主要用于觀察活細胞結構及特定分子、離子的生物學變化,定量分析,以及實時定量測定等。
成像原理
采用點光源照射標本,在焦平面上形成一個輪廓分明的小的光點,該點被照射后發出的熒光被物鏡收集,并沿原照射光路回送到由雙向色鏡構成的分光器。分光器將熒光直接送到探測器。光源和探測器前方都各有一個針孔,分別稱為照明針孔和探測針孔。兩者的幾何尺寸一致,約100-200nm;相對于焦平面上的光點,兩者是共軛的,即光點通過一系列的透鏡,終可同時聚焦于照明針孔和探測針孔。這樣,來自焦平面的光,可以會聚在探測孔范圍之內,而來自焦平面上方或下方的散射光都被擋在探測孔之外而不能成像。以激光逐點掃描樣品,探測針孔后的光電倍增管也逐點獲得對應光點的共聚焦圖像,轉為數字信號傳輸至計算機,終在屏幕上聚合成清晰的整個焦平面的共聚焦圖像。
每一幅焦平面圖像實際上是標本的光學橫切面,這個光學橫切面總是有一定厚度的,又稱為光學薄片。由于焦點處的光強遠大于非焦點處的光強,而且非焦平面光被針孔濾去,因此共聚焦系統的景深近似為零,沿Z軸方向的掃描可以實現光學斷層掃描,形成待觀察樣品聚焦光斑處二維的光學切片。把X-Y平面(焦平面)掃描與Z軸(光軸)掃描相結合,通過累加連續層次的二維圖像,經過專門的計算機軟件處理,可以獲得樣品的三維圖像。即檢測針孔和光源針孔始終聚焦于同一點,使聚焦平面以外被激發的熒光不能進入檢測針孔。
激光共聚焦的工作原理簡單表達就是它采用激光為光源,在傳統熒光顯微鏡成像的基礎上,附加了激光掃描裝置和共軛聚焦裝置,通過計算機控制來進行數字化圖像采集和處理的系統。
基本結構
激光掃描共聚焦顯微鏡系統主要包括掃描模塊、激光光源、熒光顯微鏡、數字信號處理器、計算機以及圖像輸出設備等。
(1)掃描模塊
掃描模塊主要由針孔光欄(控制光學切片的厚度)、分光鏡(按波長改變光線傳播方向)、發射熒光分色器(選擇一定波長范圍的光進行檢測)、檢測器(光電倍增管)組成。熒光樣品中的混合熒光進入掃描器,經過檢測針孔光欄、分光鏡和分色器選擇后,被分成各單色熒光,分別在不同的熒光通道進行檢測并形成相應的共焦圖象,同時在計算機屏幕上可以顯示幾個并列的單色熒光圖象及其合成圖象。
(2)熒光顯微鏡系統
顯微鏡是LSCM的主要組件,它關系到系統的成像質量。顯微鏡光路以無限遠光學系統可方便地在其中插入光學選件而不影響成像質量和測量精度。物鏡應選取大數值孔徑平場復消色差物鏡,有利于熒光的采集和成像的清晰。物鏡組的轉換,濾色片組的選取,載物臺的移動調節,焦平面的記憶鎖定都應由計算機自動控制。
激光掃描共聚焦顯微鏡所用的熒光顯微鏡大體與常規熒光顯微鏡相同,但又有其特點:需與掃描器連接,使激光能進入顯微鏡物鏡照射樣品,并使樣品發射的熒光到達檢測器;需有光路轉換裝置,即汞燈與激光轉換,同時汞燈光線強度可調。
(3)常用激光器
激光掃描共聚焦顯微鏡使用的激光光源有單激光和多激光系統,常用的激光器包括以下三種類型:
半導體激光器:405nm(近紫外譜線)
氬離子激光器:457nm、477nm、488nm、514nm(藍綠光)
氦氖激光器:543nm(綠光-氦氖綠激光器)633nm (紅光—氦氖紅激光器)
UV激光器(紫外激光器):351 nm、364 nm(紫外光)
(4)輔助設備
風冷、水冷冷卻系統及穩壓電源。
激光掃描共聚焦顯微鏡的基本工作原理是首先由激光器發射的一定波長的激發光,光線經放大后通過掃描器內的照明針孔光欄形成點光源,由物鏡聚焦于樣品的焦平面上,樣品上相應的被照射點受激發而發射出的熒光,通過檢測孔光欄后,到達檢測器,并成像于計算機監視屏上。這樣由焦平面上樣品的的每一點的熒光圖像組成了一幅完整的共焦圖像,稱為光切片。
免責聲明
- 凡本網注明“來源:儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
2025廣州國際分析測試及實驗室設備展覽會暨技術研討會
展會城市:廣州市展會時間:2025-03-05